What do neurons do for memory?
A molecular memory of calcium augmentation

* Disclaimer: Memory examples don’t fully explains synaptic memory.
It demonstrates how molecular memory can be generated from
‘common’ signaling molecules. It is not intended to literally explain
metabolic imprinting.

* Sensitization in Aplysia & long-term potentiation (LTP) in mammals

* A strong initiating stimulus ‘sensitizes’ the system. Subsequently
even weak stimuli elicit a strong response

* Both involve enhanced synaptic transmission via calcium ion flux

» Cognitive kinases: Self-propagating “on” state--a molecular memory.
PKA (&PKC in Aplysia) & CaMKII (&PKA) in LTP

* Transition from short-term to long-term memory via gene expression

A reversible regulatory system can generate a
self-propagating “on” state (molecular memory)
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Long-term sensitization of gill-withdrawal
reflex in Aplysia (Kandel, Schwartz, Byrne)
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shock leads to long-term sensitization
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Coincident stimuli sensitize the sensory neuron
(SN) to motoneuron (MN) pathway

Adenylate cyclase is the coincidence detector that
integrates stimuli and amplifies the cAMP response
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PKA: A cognitive kinase
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PKA inhibits K* channels, promoting depolarization

and enhancing Ca?* entry and secretion
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Self-propagation: Strong activation of PKA - degradation of R = Free

C (persistent activity) = Gene expression promoting degradation of R
Sensory Neuron

Enhanced PKA signaling leads to elaboration of new synaptic
contacts and a long-term sensitization to test stimuli
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Hippocampal LTP in spatial learning
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CaMKII in synaptic plasticity: Activation followed by
autophosphorylation and/or targeting to NMDA-R

Gl - AMPAR -Coincident stimuli lead to

Ca?" entry via NMDA-R

— -This potentiates

P neurotransmission via

the AMPA-R
-CaMKII becomes
persistently active by two
mechanisms: (1) auto-
phosporylation that can
propagate among ring of
subunits; (2) binding to
NMDA-R keeps its active
site in “on” state.

-CaMKII increases activity
of AMPA-R




ao-CaMKII-GFP in a hippocampal neuron
Translocation to dendritic spines

Ca2+

before
stimulation

(2 min )

CaMKII: A molecular memory device

» Persistent activity is generated by:
 Autophosphorylation
* Anchoring onto NMDA receptor

Strong
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Response to 200 msec pulses of calcium/CaM/ATP

Autonomie (% activité maximale)

Nombre de pulsations

CaMKII activation depends on the frequency of calcium stimuli

30 pulses (200 ms each) at various frequencies
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Binding to NMDA-R locks CaMKII in “on” state

Bound to NR2B

CaMKIlI activity (% maximal)
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Reversible and persistent translocation
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Phosphorylation of a CaM kinase
IT substrate in situ

anti-vimentin
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Reduced spatial memory in
autophosphorylation-deficient mice

Morris water maze test

Visible Platform then Hidden Platform
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Signaling Machines
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PKA inhibits K™ channels, promoting depolarization
and enhancing Ca®* entry and secretion
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Frequency response changes with pulse duration

Pulses: 6 12 30 75
1000ms 500 ms 200ms 80 ms
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Activated kinase binds to NMDA
receptor (NR2B)
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Binding to NR2B-C makes the kinase autonomous
of Ca?*/CaM without autophosphorylation at T286
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